منابع مشابه
Stability of F-biharmonic maps
This paper studies some properties of F-biharmonic maps between Riemannian manifolds. By considering the first variation formula of the F-bienergy functional, F-biharmonicity of conformal maps are investigated. Moreover, the second variation formula for F-biharmonic maps is obtained. As an application, instability and nonexistence theorems for F-biharmonic maps are given.
متن کاملHarmonic Maps and Biharmonic Maps
This is a survey on harmonic maps and biharmonic maps into (1) Riemannian manifolds of non-positive curvature, (2) compact Lie groups or (3) compact symmetric spaces, based mainly on my recent works on these topics.
متن کاملf -BIHARMONIC MAPS BETWEEN DOUBLY WARPED PRODUCT MANIFOLDS
A. In this paper, by applying the first variation formula of f -bi-energy given in [OND], we study f -biharmonic maps between doubly warped product manifolds M ×(μ,λ) N. Under imposing existence condition concerning proper f -biharmonic maps, we derive f -biharmonicity’s characteristic equations for the inclusion maps: iy0 : (M, g) → (M ×(μ,λ) N, ḡ), ix0 : (N, h) → (M ×(μ,λ) N, ḡ) and th...
متن کاملOn biharmonic maps and their generalizations
Abstract. We give a new proof of regularity of biharmonic maps from four-dimensional domains into spheres, showing first that the biharmonic map system is equivalent to a set of bilinear identities in divergence form. The method of reverse Hölder inequalities is used next to prove continuity of solutions and higher integrability of their second order derivatives. As a byproduct, we also prove t...
متن کاملBiharmonic Capacity and the Stability of Minimal Lagrangian Submanifolds
We study the eigenvalues of the biharmonic operators and the buckling eigenvalue on complete, open Riemannian manifolds. We show that the first eigenvalue of the biharmonic operator on a complete, parabolic Riemannian manifold is zero. We give a generalization of the buckling eigenvalue and give applications to studying the stability of minimal Lagrangian submanifolds in Kähler manifolds. MSC 1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Kyungpook mathematical journal
سال: 2015
ISSN: 1225-6951
DOI: 10.5666/kmj.2015.55.1.157